

RECALIBRATION
DUE DATE:

June 5, 2021

# Certificate of Calibration

**Calibration Certification Information** 

Cal. Date: June 5, 2020

Rootsmeter S/N: 438320

Ta: 295 Pa: 748.0 °K

Operator: Jim Tisch

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 0988

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.3610         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 0.9700         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.8630         | 7.9           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8240         | 8.8           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.6800         | 12.9          | 8.00           |

| Data Tabulation |                  |                                                                                      |        |                |                                                     |  |  |
|-----------------|------------------|--------------------------------------------------------------------------------------|--------|----------------|-----------------------------------------------------|--|--|
| Vstd<br>(m3)    | Qstd<br>(x-axis) | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis) | Va     | Qa<br>(x-axis) | $\sqrt{\Delta H \Big( \text{Ta/Pa} \Big)}$ (y-axis) |  |  |
| 0.9900          | 0.7274           | 1.4101                                                                               | 0.9957 | 0.7316         | 0.8881                                              |  |  |
| 0.9858          | 1.0162           | 1.9943                                                                               | 0.9914 | 1.0221         | 1.2560                                              |  |  |
| 0.9838          | 1.1399           | 2.2296                                                                               | 0.9894 | 1.1465         | 1.4042                                              |  |  |
| 0.9826          | 1.1924           | 2.3385                                                                               | 0.9882 | 1.1993         | 1.4728                                              |  |  |
| 0.9771          | 1.4369           | 2.8203                                                                               | 0.9828 | 1.4452         | 1.7762                                              |  |  |
|                 | m=               | 1.98556                                                                              |        | m=             | 1.24332                                             |  |  |
| QSTD            | b=               | -0.03069                                                                             | QA     | b=             | -0.01933                                            |  |  |
|                 | r=               | 0.99996                                                                              |        | r=             | 0.99996                                             |  |  |

|       | Calculation                                                                                              | s            |                                |
|-------|----------------------------------------------------------------------------------------------------------|--------------|--------------------------------|
| Vstd= | ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)                                                                              | Va=          | ΔVol((Pa-ΔP)/Pa)               |
| Qstd= | Vstd/ΔTime                                                                                               | Qa= Va/ΔTime |                                |
|       | For subsequent flow rat                                                                                  | e calculatio | ns:                            |
| Qstd= | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa=          | 1/m((\sqrt{\Delta H(Ta/Pa)})-b |

|                | Standard Conditions          |      |
|----------------|------------------------------|------|
| Tstd:          | 298.15 °K                    |      |
| Pstd:          | 760 mm Hg                    |      |
|                | Key                          |      |
| ΔH: calibrator | manometer reading (in H2O)   |      |
| ΔP: rootsmete  | er manometer reading (mm Hg) |      |
| Ta: actual abs | olute temperature (*K)       |      |
| Pa: actual bar | ometric pressure (mm Hg)     |      |
| b: intercept   |                              |      |
| m: slope       |                              | - 77 |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

# AECOM Asia Company Limited Tisch TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

| Station                                                                    | Block B, Merit Industrial Centre ( E-A14a ) |                                           |                     | Operator:              | Choi W                         | Choi Wing Ho                                  |         |  |
|----------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------|------------------------|--------------------------------|-----------------------------------------------|---------|--|
| Cal. Date:                                                                 | 22/9/2020                                   |                                           |                     | Next Due Date:         | 22/11/2020                     |                                               |         |  |
| fodel No.:                                                                 | TE-5170                                     | _                                         |                     | Serial No.             | 103                            | 180                                           | •       |  |
| equipment No.:                                                             | A-001-15T                                   | _                                         |                     | ·-                     |                                |                                               |         |  |
|                                                                            |                                             | PARELLY COM                               | Ambient (           | Condition              |                                |                                               |         |  |
| Temperature                                                                | е, Та (К)                                   | 305                                       | Pressure, F         | Pa (mmHg)              |                                | 754.4                                         |         |  |
|                                                                            |                                             | ,                                         | rifice Transfer Sta | andard Information     |                                |                                               |         |  |
| Serial N                                                                   | No:                                         | 988                                       | Slope, mc           |                        | 3556                           | Intercept, bc                                 | -0.0306 |  |
| Last Calibrat                                                              |                                             | 5-Jun-20                                  |                     |                        |                                | 250000                                        |         |  |
| Next Calibrat                                                              | ion Date:                                   | 5-Jun-21                                  |                     | mc x Qstd + bc =       | = [H x (Pa/760) x              | (298/Ta)] <sup>1/2</sup>                      |         |  |
| No.                                                                        |                                             |                                           | Calibration of      | TSP Sampler            |                                |                                               |         |  |
|                                                                            |                                             | (                                         | Orfice              |                        | HV                             | S Flow Recorder                               |         |  |
| Resistance Plate<br>No.                                                    | DH (orifice),<br>in. of water               | [DH x (Pa/760) x (298/Ta)] <sup>1/2</sup> |                     | Qstd (m³/min) X - axis | Flow Recorder<br>Reading (CFM) | Continuous Flow Recor<br>Reading IC (CFM) Y-a |         |  |
| 18                                                                         | 7.1                                         |                                           | 2.62                |                        | 45.0                           | 44.32                                         | 2       |  |
| 13                                                                         | 6.0                                         |                                           | 2.41                | 1.23                   | 40.0                           | 39.39                                         | )       |  |
| 10                                                                         | 5.0                                         |                                           | 2.20                | 1.12                   | 35.0                           | 34.47                                         | *       |  |
| 7                                                                          | 4.0                                         | 1.97                                      |                     | 1.01                   | 29.0                           | 28.56                                         | 3       |  |
| 5                                                                          | 2.9                                         |                                           | 1.68                | 0.86                   | 22.0                           | 21.67                                         | 7       |  |
| By Linear Regress Slope , mw = Correlation Coeffic If Correlation Coeffice | 47.7102<br>cient* =                         |                                           | .9998<br>ate.       | Intercept, bw =        | -19.                           | 3681                                          | -       |  |
| ii ooriolalion oooli                                                       |                                             | TOOK GITG TOOGIET                         |                     |                        |                                |                                               |         |  |
|                                                                            |                                             |                                           |                     | Calculation            |                                |                                               |         |  |
| From the TSP Field<br>From the Regression                                  |                                             | Y" value accordi                          | ng to               | [(Ра/760) x (298/Та    | a)] <sup>1/2</sup>             |                                               |         |  |
| Therefore, Set Poin                                                        | t; IC = ( mw x Qs                           | td + bw ) x [( 760                        | )/Pa)x(Ta/298       | )) <sup>1/2</sup> =    | 9                              | 43.31                                         | -       |  |
| Remarks:                                                                   |                                             |                                           |                     |                        |                                |                                               |         |  |
| QC Reviewer:                                                               | WS CH                                       | man /                                     | Signature:          | P                      |                                | Date: 21/9                                    | 12020   |  |

# **EQUIPMENT CALIBRATION RECORD**

| Type:                                   |                                                               |                         |                          | Laser Du   | ıst Moni    | tor                                      |                    |                     |
|-----------------------------------------|---------------------------------------------------------------|-------------------------|--------------------------|------------|-------------|------------------------------------------|--------------------|---------------------|
| 00 Feb. 2                               | acturer/Brand:                                                |                         | -                        | SIBATA     |             |                                          |                    |                     |
| Model                                   | No.:                                                          |                         |                          | LD-3       |             |                                          |                    |                     |
| Equip                                   | ment No.:                                                     |                         |                          | A.005.07   | a           |                                          |                    |                     |
| Sensit                                  | ivity Adjustment                                              | Scale Set               | ting:                    | 557 CPI    | И           |                                          |                    |                     |
| Opera                                   | tor:                                                          |                         | _                        | Mike She   | k (MSKN     | A)                                       |                    |                     |
| Standa                                  | rd Equipment                                                  |                         |                          |            |             |                                          |                    |                     |
| Equip                                   | ment:                                                         | Pun                     | precht & Pa              | tachnick   | TEOM®       |                                          |                    |                     |
| Venue                                   |                                                               |                         | erport (Pui              |            |             | chool)                                   |                    |                     |
| Model                                   |                                                               |                         | es 1400AB                | ring occe  | madi y Oc   | Siloon                                   |                    |                     |
| Serial                                  |                                                               |                         |                          | 0AB2198    | 99803       |                                          |                    |                     |
| Condi                                   | 110.                                                          |                         |                          | 00C1436    |             | Ko: 12500                                |                    |                     |
| Last C                                  | Calibration Date*:                                            |                         | ay 2020                  | 00077000   | 30000       |                                          |                    |                     |
| *Remar                                  | ks: Recommend                                                 | ed interva              | l for hardwa             | re calibra | tion is 1 y | year                                     |                    |                     |
| Calibra                                 | tion Result                                                   |                         |                          |            |             |                                          |                    |                     |
|                                         | tivity Adjustment<br>tivity Adjustment                        |                         |                          |            |             | 557 CP                                   |                    |                     |
| Hour                                    | Date                                                          | Т                       | ime                      | Amb        | pient       | Concentration <sup>1</sup>               | Total              | Count/              |
| 100000000000000000000000000000000000000 | (dd-mm-yy)                                                    |                         |                          | Cond       | dition      | (mg/m <sup>3</sup> )                     | Count <sup>2</sup> | Minute <sup>3</sup> |
|                                         |                                                               |                         |                          | Temp       | R.H.        | Y-axis                                   |                    | X-axis              |
|                                         |                                                               |                         |                          | (°C)       | (%)         | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |                    | 71.00               |
| 1                                       | 02-05-20                                                      | 09:15                   | - 10:15                  | 26.7       | 77          | 0.04836                                  | 1945               | 32.42               |
| 2                                       | 02-05-20                                                      | 10:15                   | - 11:15                  | 26.7       | 77          | 0.05134                                  | 2056               | 34.27               |
| 3                                       | 02-05-20                                                      | 11:15                   | - 12:15                  | 26.8       | 77          | 0.05331                                  | 2130               | 35.50               |
| 4                                       | 02-05-20                                                      | 12:15                   | - 13:15                  | 26.8       | 77          | 0.05535                                  | 2214               | 36.90               |
| Slope                                   | Total Count     Count/minus     Regression of     (K-factor): | was logge<br>te was cal | ed by Laser culated by ( | Dust Mor   | nitor       | ashnick TEOM®                            |                    |                     |
| Corre                                   | lation coefficient:                                           | ,                       | 0.9976                   |            |             |                                          |                    |                     |
| Validit                                 | ty of Calibration I                                           | Record:                 | 2 May 20                 | )21        |             |                                          |                    |                     |
| Remark                                  | ks:                                                           |                         |                          |            |             | W110                                     | 555) <del></del>   |                     |
| 5                                       |                                                               |                         |                          |            |             |                                          | 14                 | đ                   |
| QC R                                    | eviewer: _ <i>YW I</i>                                        | -ung                    | Signa                    | ature:     | 1/          | Date                                     | e: 04 Ma           | яу 2020             |

## **EQUIPMENT CALIBRATION RECORD**

| Type:<br>Manufa<br>Model | acturer/Brand:                                                           |                                           | _;        | Laser Du<br>SIBATA<br>LD-3 | st Moni  | tor                        |                    |                     |
|--------------------------|--------------------------------------------------------------------------|-------------------------------------------|-----------|----------------------------|----------|----------------------------|--------------------|---------------------|
|                          | nent No.:                                                                |                                           |           | A.005.09a                  |          |                            |                    |                     |
| 5,515 05                 | Sensitivity Adjustment Scale Setting:                                    |                                           |           | 797 CPN                    |          |                            |                    |                     |
| Operator:                |                                                                          |                                           |           | Mike She                   | k (MSKN  | <b>Л</b> )                 |                    |                     |
| Standar                  | d Equipment                                                              |                                           |           | 310                        |          |                            |                    |                     |
| Equipn                   | nent:                                                                    | Ruppre                                    | cht & Pat | ashnick :                  | ΓΕΟΜ®    |                            |                    |                     |
| Venue                    |                                                                          |                                           |           | ing Seco                   | ndary So | chool)                     |                    |                     |
| Model                    |                                                                          | Series                                    | 1400AB    |                            |          |                            |                    |                     |
| Serial I                 | No:                                                                      | Control                                   | 140       | AB21989                    | 9803     |                            | thouse and esta-   |                     |
|                          |                                                                          | Sensor                                    |           | 0C14365                    | 9803     | K <sub>o</sub> : _12500    |                    |                     |
| Last C                   | alibration Date*:                                                        | 1 May 2                                   | 2020      |                            |          |                            |                    |                     |
| *Remark                  | s: Recommend                                                             | ed interval for                           | hardwar   | e calibrat                 | ion is 1 | year                       |                    |                     |
| Calibrat                 | tion Result                                                              |                                           |           |                            |          |                            |                    |                     |
|                          | ivity Adjustment<br>ivity Adjustment                                     |                                           |           |                            |          | 797 CF                     |                    |                     |
| Hour                     | Date                                                                     | Time                                      |           | Amb                        | ient     | Concentration <sup>1</sup> | Total              | Count/              |
|                          | (dd-mm-yy)                                                               |                                           |           | Condition                  |          | (mg/m <sup>3</sup> )       | Count <sup>2</sup> | Minute <sup>3</sup> |
|                          | (                                                                        |                                           |           | Temp                       | R.H.     | Y-axis                     | 35.5,77.37         | X-axis              |
|                          |                                                                          |                                           |           | (°C)                       | (%)      |                            |                    |                     |
| 1                        | 02-05-20                                                                 | 09:45 -                                   | 10:45     | 26.7                       | 77       | 0.04884                    | 1956               | 32.60               |
| 2                        | 02-05-20                                                                 | 10:45 -                                   | 11:45     | 26.7                       | 77       | 0.05157                    | 2070               | 34.50               |
| 3                        | 02-05-20                                                                 | 11:45 -                                   | 12:45     | 26.8                       | 77       | 0.05355                    | 2158               | 35.97               |
| 4                        | 02-05-20                                                                 | 12:45 -                                   | 13:45     | 26.8                       | 77       | 0.05593                    | 2241               | 37.35               |
|                          | Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): | was logged be<br>te was calcula<br>Y or X | y Laser ( | Dust Mon                   | itor     | ashnick TEOM®              |                    |                     |
|                          | ation coefficient:                                                       | . (                                       | 0.9974    |                            |          |                            |                    |                     |
| Validit                  | y of Calibration f                                                       | Record: _2                                | ? May 20  | 21                         |          |                            |                    |                     |
| Remark                   | s:                                                                       |                                           | n.        | -                          |          |                            |                    |                     |
|                          |                                                                          |                                           |           |                            |          |                            |                    | 2                   |
| QC Re                    | eviewer: YW F                                                            | Fung                                      | Signa     | ture:                      | n        | Dat                        | e: _04 Ma          | ву 2020             |



港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

Certificate No.:

20CA0318 01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1) **B&K** 

Microphone **B&K** 

Preamp **B&K** 

Manufacturer: Type/Model No.:

2250-1

4950 2665582 ZC0032

Serial/Equipment No.: Adaptors used:

2681366

17190

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.: Date of receipt:

18-Mar-2020

Date of test:

19-Mar-2020

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

23-Aug-2020

CIGISMEC

Signal generator

DS 360

33873

N-011.01

10-May-2020

CEPREI

**Ambient conditions** 

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

#### Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3 between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Feng

Jungi

Approved Signatory:

Date:

19-Mar-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007



# 綜合試驗有限公司

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0318 01

Page

2

1. **Electrical Tests** 

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtest:                                | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|------------------------------|--------------------|
| Self-generated noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α                                       | Pass    | 0.3                          |                    |
| 3-11-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                       | Pass    | 0.8                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lin                                     | Pass    | 1.6                          |                    |
| Linearity range for Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | At reference range . Step 5 dB at 4 kHz | Pass    | 0.3                          |                    |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference SPL on all other ranges       | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 dB below upper limit of each range    | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 dB above lower limit of each range    | Pass    | 0.3                          |                    |
| Linearity range for SPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | At reference range, Step 5 dB at 4 kHz  | Pass    | 0.3                          |                    |
| Frequency weightings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [18] [18] [18] [18] [18] [18] [18] [18] | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A<br>C                                  | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lin                                     | Pass    | 0.3                          |                    |
| Time weightings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single Burst Fast                       | Pass    | 0.3                          |                    |
| and the street of the street o | Single Burst Slow                       | Pass    | 0.3                          |                    |
| Peak response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single 100µs rectangular pulse          | Pass    | 0.3                          |                    |
| R.M.S. accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crest factor of 3                       | Pass    | 0.3                          |                    |
| Time weighting I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single burst 5 ms at 2000 Hz            | Pass    | 0.3                          |                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Repeated at frequency of 100 Hz         | Pass    | 0.3                          |                    |
| Time averaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 ms burst duty factor 1/103 at 4kHz    | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ms burst duty factor 1/104 at 4kHz    | Pass    | 0.3                          |                    |
| Pulse range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Single burst 10 ms at 4 kHz             | Pass    | 0.4                          |                    |
| Sound exposure level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Single burst 10 ms at 4 kHz             | Pass    | 0.4                          |                    |
| Overload indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPL                                     | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leq                                     | Pass    | 0.4                          |                    |

#### 2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 19-Mar-2020 Fnd

Checked by

Date:

Shek Kwong Tat

19-Mar-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to\maintain the required accuracy level

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007



香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com



#### CERTIFICATE OF CALIBRATION

Certificate No.:

20CA0914 02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B & K

B&K

Type/Model No .:

2238

Serial/Equipment No.:

2800927

4188

2250455

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

Date of receipt:

14-Sep-2020

Date of test:

19-Sep-2020

Reference equipment used in the calibration

Description:

Model: B&K 4226

Serial No. 2288444

**Expiry Date:** 

Traceable to:

Multi function sound calibrator Signal generator

DS 360

61227

23-Aug-2021 24-Dec-2020 CIGISMEC CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1000 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

20-Sep-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007



香港新界葵涌永基路22-24號好爸爸創科大厦 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com



## CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0914 02

Page

2

#### 1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test:                   | Subtest:                               | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>, Factor |
|-------------------------|----------------------------------------|---------|------------------------------|----------------------|
| Self-generated noise    | A                                      | Pass    | 0.3                          |                      |
| our generated notes     | C                                      | Pass    | 1.0                          | 2.1                  |
|                         | Lin                                    | Pass    | 2.0                          | 2.2                  |
| Linearity range for Leg | At reference range, Step 5 dB at 4 kHz | Pass    | 0.3                          | 2.2                  |
|                         | Reference SPL on all other ranges      | Pass    | 0.3                          |                      |
|                         | 2 dB below upper limit of each range   | Pass    | 0.3                          |                      |
|                         | 2 dB above lower limit of each range   | Pass    | 0.3                          |                      |
| Linearity range for SPL | At reference range, Step 5 dB at 4 kHz | Pass    | 0.3                          |                      |
| Frequency weightings    | Α                                      | Pass    | 0.3                          |                      |
| , , , ,                 | С                                      | Pass    | 0.3                          |                      |
|                         | Lin                                    | Pass    | 0.3                          |                      |
| Time weightings         | Single Burst Fast                      | Pass    | 0.3                          |                      |
|                         | Single Burst Slow                      | Pass    | 0.3                          |                      |
| Peak response           | Single 100µs rectangular pulse         | Pass    | 0.3                          |                      |
| R.M.S. accuracy         | Crest factor of 3                      | Pass    | 0.3                          |                      |
| Time weighting I        | Single burst 5 ms at 2000 Hz           | Pass    | 0.3                          |                      |
|                         | Repeated at frequency of 100 Hz        | Pass    | 0.3                          |                      |
| Time averaging          | 1 ms burst duty factor 1/103 at 4kHz   | Pass    | 0.3                          |                      |
|                         | 1 ms burst duty factor 1/104 at 4kHz   | Pass    | 0.3                          |                      |
| Pulse range             | Single burst 10 ms at 4 kHz            | Pass    | 0.4                          |                      |
| Sound exposure level    | Single burst 10 ms at 4 kHz            | Pass    | 0.4                          |                      |
| Overload indication     | SPL                                    | Pass    | 0.3                          |                      |
|                         | Leq                                    | Pass    | 0.4                          |                      |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
| ,                 | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 19-Sep-2020 - End

Checked by

Date:

20-Sep-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007



香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

Certificate No.:

20CA0324 01

Page:

to:

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

MVI

Type/Model No.:

CAL21

Serial/Equipment No.:

34113610(2011) / N.004.11

Adaptors used:

Yes (BAC21)

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

24-Mar-2020

Date of test:

25-Mar-2020

#### Reference equipment used in the calibration

| Description:            | Model:   | Serial No. | Expiry Date: | Traceable 1 |
|-------------------------|----------|------------|--------------|-------------|
| Lab standard microphone | B&K 4180 | 2341427    | 03-May-2020  | SCL         |
| Preamplifier            | B&K 2673 | 2239857    | 17-May-2020  | CEPREI.     |
| Measuring amplifier     | B&K 2610 | 2346941    | 05-Jun-2020  | CEPREI      |
| Signal generator        | DS 360   | 33873      | 10-May-2020  | CEPREI      |
| Digital multi-meter     | 34401A   | US36087050 | 08-May-2020  | CEPREI      |
| Audio analyzer          | 8903B    | GB41300350 | 13-May-2020  | CEPREI      |
| Universal counter       | 53132A   | MY40003662 | 10-May-2020  | CEPREI      |

#### Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

#### Test specifications

- 1. The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

#### Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate

Approved Signatory:

Date:

26-Mar-2020

Company Chop:

Comments: The results reported in this contificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No CARP156-1/Issue 1/Rev.D/01/03/2007



香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0324 01

Page:

2

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

| Frequency | Output Sound Pressure | Measured Output      | Estimated Expanded |
|-----------|-----------------------|----------------------|--------------------|
| Shown     | Level Setting         | Sound Pressure Level | Uncertainty        |
| Hz        | dB                    | dB                   | d8                 |
| 1000      | 94.00                 | 94.14                | 0.10               |

#### 2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.014 dB

Estimated expanded uncertainty

0.005 dB

#### 3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1002.6 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

#### 4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 1.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

0 12 1 11

End

Calibrated by:

Fung Chi Yip

Checked by:

Shek Kwong Tat

Date:

25-Mar-2020`

Date:

26-Mar-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005



ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung

N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

# REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MIKE SHEK

CLIENT:

AECOM ASIA COMPANY LIMITED

ADDRESS:

13/F. TOWER 2. GRAND CENTRAL PLAZA.

138 SHATIN RURAL COMMITTEE ROAD,

SHATIN, HONG KONG

WORK ORDER:

HK2027172

SUB- BATCH:

0

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE: 21-Jul-2020

27-Jul-2020

#### SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type:

Multifunctional Meter

Service Nature:

Performance Check

Scope:

Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.:

YSI 6820 V2

Serial No./ Equipment No.:

00H1019 (W.026.09)

Date of Calibration:

21-July-2020

#### GENERAL COMMENTS

This is the Final Report and supersedes any preliminary report with this batch number.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:

HK2027172

SUB- BATCH:

0

DATE OF ISSUE:

27-Jul-2020

CLIENT:

AECOM ASIA COMPANY LIMITED

**Equipment Type:** 

Multifunctional Meter

Brand Name/

YSI 6820 V2

Model No .: Serial No./

Equipment No.: Date of Calibration: 00H1019 (W.026.09)

21-July-2020

Date of Next Calibration:

21-October-2020

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

| Expected Reading (µS/cm) | Displayed Reading (µS/cm) | Tolerance (%) |
|--------------------------|---------------------------|---------------|
| 146.9                    | 145.0                     | -1.3          |
| 6667                     | 6710                      | +0.6          |
| 12890                    | 12740                     | -1.2          |
| 58670                    | 58740                     | +0.1          |
|                          | Tolerance Limit (%)       | ±10.0         |

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

| Expected Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Displayed Reading (mg/L) | Tolerance (mg/L) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|
| 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.72                     | -0.03            |
| 5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.44                     | -0.01            |
| 7.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.54                     | -0.06            |
| Act of the Management of the Control | Tolerance Limit (mg/L)   | ±0.20            |

pH Value

Method Ref: APHA (21st edition), 4500H; B

| Expected Reading (pH unit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Displayed Reading (pH unit) | Tolerance (pH unit) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.95                        | -0.05               |
| 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.93                        | -0.07               |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.94                        | -0.06               |
| The second of th | Tolerance Limit (pH unit)   | ±0.20               |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER:

HK2027172

SUB- BATCH:

0

DATE OF ISSUE:

27-Jul-2020

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type: Brand Name/ Multifunctional Meter

Brand Name/ Model No.:

YSI 6820 V2

Serial No./

00H1019 (W.026.09)

Equipment No.: Date of Calibration:

21-July-2020

Date of Next Calibration:

21-October-2020

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

| Expected Reading (NTU) | Displayed Reading (NTU) | Tolerance (%) |
|------------------------|-------------------------|---------------|
| 0                      | 0.0                     |               |
| 4                      | 4.1                     | +2.5          |
| 10                     | 10.6                    | +6.0          |
| 20                     | 20.6                    | +3.0          |
| 50                     | 50.4                    | +0.8          |
| 100                    | 102.3                   | +2.3          |
|                        | Tolerance Limit (%)     | ±10.0         |

Salinity

Method Ref: APHA (21st edition), 2520B

| Expected Reading (ppt) | Displayed Reading (ppt) | Tolerance (%) |
|------------------------|-------------------------|---------------|
| 0                      | 0.00                    | 55            |
| 10                     | 10.02                   | +0.2          |
| 20                     | 20.05                   | +0.3          |
| 30                     | 29.97                   | -0.1          |
|                        | Tolerance Limit (%)     | ±10.0         |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER:

HK2027172

SUB- BATCH:

0

DATE OF ISSUE:

27-Jul-2020

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.: YSI 6820 V2

Serial No./

131 002U VZ

Equipment No.:

00H1019 (W.026.09)

Date of Calibration:

21-July-2020

Date of Next Calibration:

21-October-2020

PARAMETERS:

**Temperature** 

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

| Expected Reading (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Displayed Reading (°C) | Tolerance (°C) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|
| 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                   | -0.0           |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.9                   | -0.1           |
| 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.44                  | -0.1           |
| - Control of the Cont | Tolerance Limit (°C)   | ±2.0           |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

N:5

Ms. Lin Wai Yu, Iris



ALS Technichem (HK) Ptv Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung

N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

# REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MIKE SHEK

CLIENT:

AECOM ASIA COMPANY LIMITED

ADDRESS:

1501-10, 15/F, TOWER 1,

GRAND CENTRAL PLAZA,

138 SHATIN RURAL COMMITTEE ROAD. SHATIN, NEW TERRITORIES, HONG KONG

WORK ORDER:

HK2038217

SUB- BATCH:

LABORATORY:

HONG KONG

DATE RECEIVED:

08-Oct-2020

DATE OF ISSUE:

12-Oct-2020

#### SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type:

Multifunctional Meter

Service Nature:

Performance Check

Scope:

Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.:

YSI 6820 V2

Serial No./ Equipment No.:

12A101545 (W.026.35)

Date of Calibration:

08-October-2020

#### **GENERAL COMMENTS**

This is the Final Report and supersedes any preliminary report with this batch number.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:

HK2038217

SUB- BATCH:

0

DATE OF ISSUE:

12-Oct-2020

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

YSI 6820 V2

Serial No./

Equipment No.: Date of Calibration: 12A101545 (W.026.35)

08-October-2020

Date of Next Calibration:

08-January-2021

**PARAMETERS:** 

Conductivity

Method Ref: APHA (21st edition), 2510B

| Expected Reading (µS/cm) | Displayed Reading (μS/cm) | Tolerance (%) |
|--------------------------|---------------------------|---------------|
| 146.9                    | 143.0                     | -2.7          |
| 6667                     | 6981                      | +4.7          |
| 12890                    | 12564                     | -2.5          |
| 58670                    | 58265                     | -0.7          |
|                          | Tolerance Limit (%)       | ±10.0         |

**Dissolved Oxygen** 

Method Ref: APHA (21st edition), 45000: G

| Expected Reading (mg/L)                       | Displayed Reading (mg/L) | Tolerance (mg/L) |
|-----------------------------------------------|--------------------------|------------------|
| 3.55                                          | 3.59                     | +0.04            |
| 5.50                                          | 5.53                     | +0.03            |
| 7.40                                          | 7.36                     | -0.04            |
| VIII ( 10 10 10 10 10 10 10 10 10 10 10 10 10 | Tolerance Limit (mg/L)   | ±0.20            |

pH Value

Method Ref: APHA (21st edition), 4500H: B

| Expected Reading (pH unit) | Displayed Reading (pH unit) | Tolerance (pH unit) |
|----------------------------|-----------------------------|---------------------|
| 4.0                        | 4.09                        | +0.09               |
| 7.0                        | 6.98                        | -0.02               |
| 10.0                       | 10.04                       | +0.04               |
|                            | Tolerance Limit (pH unit)   | ±0.20               |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER:

HK2038217

SUB- BATCH:

0

DATE OF ISSUE:

12-Oct-2020

CLIENT:

**AECOM ASIA COMPANY LIMITED** 

Equipment Type:

Multifunctional Meter

Brand Name/

YSI 6820 V2

Model No.: Serial No./

Equipment No.:

Date of Calibration:

12A101545 (W.026.35) 08-October-2020

Date of Next Calibration:

08-January-2021

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

| Expected Reading (NTU) | Displayed Reading (NTU) | Tolerance (%) |
|------------------------|-------------------------|---------------|
| 0                      | 0.0                     | **            |
| 4                      | 4.0                     | +0.0          |
| 10                     | 9.5                     | -5.0          |
| 20                     | 20.1                    | +0.5          |
| 50                     | 46.5                    | -7.0          |
| 100                    | 93.00                   | -7.0          |
|                        | Tolerance Limit (%)     | ±10.0         |

Salinity

Method Ref: APHA (21st edition), 2520B

| Expected Reading (ppt) | Displayed Reading (ppt) | Tolerance (%) |
|------------------------|-------------------------|---------------|
| 0                      | 0.03                    | **            |
| 10                     | 10.31                   | +3.1          |
| 20                     | 20.70                   | +3.5          |
| 30                     | 31.32                   | +4.4          |
|                        | Tolerance Limit (%)     | ±10.0         |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

WORK ORDER:

HK2038217

SUB- BATCH:

0

DATE OF ISSUE:

12-Oct-2020

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

YSI 6820 V2

Serial No./

12A101545 (W.026.35)

Equipment No.: Date of Calibration:

08-October-2020

Date of Next Calibration:

08-January-2021

PARAMETERS:

**Temperature** 

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

| Expected Reading (°C) | Displayed Reading (°C) | Tolerance (°C) |
|-----------------------|------------------------|----------------|
| 10.0                  | 9.97                   | -0.0           |
| 20.0                  | 19.82                  | -0.2           |
| 39.5                  | 40.68                  | +1.2           |
|                       | Tolerance Limit (°C)   | ±2.0           |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

N:5

Ms. Lin Wai Yu, Iris