

RECALIBRATION **DUE DATE:**

May 22, 2019

ertificate of

Calibration Certification Information

Cal. Date: May 22, 2018

Rootsmeter S/N: 438320

Ta: 296

°K

Operator: Jim Tisch

Pa: 749.3

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 0988

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3840	3.2	2.00
2	3	4	1	0.9840	6.4	4.00
3	5	6	1	0.8790	7.9	5.00
4	7	8	1	0.8420	8.7	5.50
5	9	10	1	0.6900	12.7	8.00

	~~~~	Data Tabulat	tion		
Vstd (m3)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis)	Va	Qa (x-axis)	√∆H(Ta/Pa)
0.9883	0.7141	1.4090	0.9957	0.7195	0.8889
0.9841	1.0001	1.9926	0.9915	1.0076	1.2570
0.9821	1.1173	2.2278	0.9895	1.1257	1.4054
0.9811	1.1652	2.3365	0.9884	1.1739	1.4740
0.9758	1.4141	2.8179	0.9831	1.4247	1,7777
	m=	2.01748		m=	1.26331
QSTD[	b=	b= -0.02651		b=	-0.01673
	r=	0.99988	QA	r=	0.99988

Calculation	ns
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)
Qstd= Vstd/ΔTime	Qa= Va/ΔTime
For subsequent flow ra	te calculations:
Qstd= $1/m \left( \left( \sqrt{\Delta H \left( \frac{Pa}{Pstd} \right) \left( \frac{Tstd}{Ta} \right)} \right) - b \right)$	$Qa = 1/m \left( \left( \sqrt{\Delta H \left( Ta/Pa \right)} \right) - b \right)$

	Standard Conditions	
Tstd:	298.15 °K	_
Pstd:	760 mm Hg	
	Key	
ΔH: calibrator	manometer reading (in H2O)	
ΔP: rootsmete	er manometer reading (mm Hg)	
Ta: actual abs	olute temperature (°K)	
Pa: actual bar	ometric pressure (mm Hg)	
b: intercept		
m: slope		_

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

# AECOM Asia Company Limited Tisch TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

Station	Block B, Merit In	dustrial Centre ( l	E-A14a )	Operator:	Choi Wing Ho			
Cal. Date:	28-Mar-19			Next Due Date:	28-May-19 10380			
Model No.:	TE-5170	Serial No						
Equipment No.:	A-001-15T	_		, <del>-</del>				
			Ambient (	Condition				
Temperature	Temperature, Ta (K) 295 Pressure					761.5		
		0	rifice Transfer St	andard Information	ı			
Serial I	No:	988	Slope, mc	2.01	748	Intercept, bc	-0.0265	
Last Calibrat	Last Calibration Date: 22-May-18					1200 m ×1/2		
Next Calibrat	ion Date:	22-May-19	, at	mc x Qstd + bc =	= [H x (Pa/760) x 	(298/Ta)]***		
			Calibration of	TSP Sampler				
		(	Orfice		HV	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF		
18	7.2		2.70	1.35	47.0	47.28		
13	6.2		2.51	1.25	43.0	43.26	3	
10	4.9		2.23	1.12	37.0	37.22		
7	3.5		1.88	0.95	30.0	30.18	3	
5	2.4		1.56	0.79	24.0	24.15	5	
By Linear Regress Slope , mw = Correlation Coeffic	41.1576 cient* =		9993	Intercept, bw =	-8.4	1818	-	
*If Correlation Coeff	ricient < 0.990, c	heck and recalibra	ate.					
			Set Point	Calculation				
From the TSP Field From the Regression		"Y" value accordir	ng to	: [(Pa/760) x (298/T:	a)] ^{1/2}			
Therefore, Set Poin	t; IC = ( mw x Q:	std + bw ) x [( 760	/ Pa ) x ( Ta / 298	)] ^{1/2} =		44.75	-	
Remarks:					20,000			
OC Peviewer	WS		Signature:	45		28 3	19	

# AECOM Asia Company Limited Tisch TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

al. Date:				_	Choi Wing Ho			
_	17-May-19			Next Due Date:	17-Jul-19			
odel No.:	TE-5170			Serial No.	103	10380		
quipment No.:	A-001-15T	_		·-				
			A mate la mate	N = - 190				
	T- 00 T	- 1000 T	Ambient (			750 F		
Temperature	mperature, Ta (K) 303 Pressure, Pa (mmHg) 752.5							
		0	rifice Transfer Sta	andard Information		14.		
Serial N	No:	988	Slope, mc	2.01	748	Intercept, bc	-0.026	
Last Calibrati	ion Date:	22-May-18			TT	(200/5 > 1/2		
Next Calibrat	ion Date:	22-May-19		mc x Qstd + bc =	= [H x (Pa/760) x	(298/Ta)]***		
			0 111 4	700.0				
		0	Calibration of Orfice	15P Sampler	HVS	S Flow Recorder		
Decistores Dista								
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7)	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF		
18	7.1		2.63	1.32	46.0	45.39	)	
10		2.46			40.0	44.41	:	
13	6.2		2.46	1.23	42.0	41.45	,	
	6.2 5.0		2.46 2.21	1.23	37.0	36.5		
13								
13 10	5.0		2.21	1.11	37.0	36.5	)	
13 10 7	5.0 3.5 2.5 sion of Y on X 38.9459		2.21 1.85	1.11 0.93	37.0 30.0 25.0	36.5 ² 29.60	)	
13 10 7 5 By Linear Regress	5.0 3.5 2.5 sion of Y on X 38.9459 cient* =	0.	2.21 1.85 1.56	1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope, mw = Correlation Coeffice	5.0 3.5 2.5 sion of Y on X 38.9459 cient* =	0.	2.21 1.85 1.56 9983 ate.	1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope , mw = Correlation Coeffic	5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	0. heck and recalibra	2.21 1.85 1.56  9983 ate.  Set Point (	1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope, mw = Correlation Coeffice	5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	0. heck and recalibrate, take Qstd = 1.	2.21 1.85 1.56 9983 ate. Set Point (30m³/min	1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope , mw = Correlation Coeffic If Correlation Coeffic	5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	0. heck and recalibrate, take Qstd = 1.	2.21 1.85 1.56 9983 ate. Set Point (30m³/min	1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope , mw = Correlation Coeffic If Correlation Coeffic	5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	0. heck and recalibra ve, take Qstd = 1. "Y" value according	2.21 1.85 1.56  9983 ate.  Set Point ( 30m³/min	1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope , mw = Correlation Coeffic If Correlation Coeffic	5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	o. heck and recalibra  ve, take Qstd = 1. "Y" value accordir  mw x	2.21 1.85 1.56  9983 ate.  Set Point ( 30m³/min ng to  x Qstd + bw = IC x	1.11 0.93 0.79 Intercept, bw =	37.0 30.0 25.0	36.5° 29.60 24.6°	)	

#### **EQUIPMENT CALIBRATION RECORD**

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:				Laser Du SIBATA LD-3B A.005.16 521 CPI	а	tor		
Operator:				Mike She	k (MSKN	1)		
Standa	rd Equipment				1/-			
Equipr Venue Model Serial Last C	ment: e: No.:	Cybe Serie Conf Sens 3 Ma	sor: 120 ay 2018	7ing Seco 0AB21989 00C14365	ndary So 99803 59803	K _o : <u>12500</u>		
						, oai		
Calibra	tion Result					9,00		
	ivity Adjustment ivity Adjustment					521 CF 521 CF		
Hour	Date (dd-mm-yy)	Ti	me	Amb Cond Temp (°C)		Concentration ¹ (mg/m³) <b>Y-axis</b>	Total Count ²	Count/ Minute ³ X-axis
1	14-07-18	10:15	- 11:15	29.1	79	0.04328	1742	29.03
2	14-07-18	11:15	- 12:15	29.1	78	0.04673	1874	31.23
3	14-07-18	12:15	- 13:15	29.2	79	0.04904	1961	32.68
4	14-07-18	13:15	- 14:15	29.2	79	0.04734	1897	31.62
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logge e was calc Y or X	d by Laser [ ulated by (T 0.0015 0.9974	Oust Mon otal Cou	itor	ashnick TEOM®		
Validit	y of Calibration F	Record:	14 July 20	019				
Remark	s:							
QC Re	eviewer: <u>YW F</u>	ung	Signat	ture:	4/	Date	e: <u>16 Jul</u> y	y 2018

## **EQUIPMENT CALIBRATION RECORD**

Type:				Laser Di	ust Mani	itor		
	facturer/Brand:		-	SIBATA	ust WOIII	itor		
Mode			_	LD-3				
	Equipment No.:				'a			
Sensitivity Adjustment Scale Setting:				557 CPM				
Opera	ator:		_	Mike She	ek (MSKN	M)		
Standa	rd Equipment							
Equip			echt & Pa					
Venue			ort (Pui \	Ying Seco	ondary So	chool)		
Model			1400AB	0450400				<u></u>
Serial	NO:	Contro	-	DAB21989		V · 40500		
Last C	Calibration Date*:	Sensor 3 May		00C1436	59803	K _o : <u>12500</u>		
	and anom bate.	_ o may	2010		2016			
*Remar	ks: Recommend	ed interval fo	r hardwai	re calibra	tion is 1 y	year		
Calibra	tion Result							
0:		0 - 1 - 0 - 11'	(D. f.	<b>.</b>				
Sensit	ivity Adjustment	Scale Setting	(Before	Calibratio	n):	CF		
Sensit	ivity Adjustment	Scale Setting	(After Ca	alibration	):	_557 CF	'M	
Hour	Date	Time	<u> </u>	Amh	pient	Concentration ¹	Total	Count/
1.00.	(dd-mm-yy)				dition	(mg/m³)	Count ²	Minute ³
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Temp	R.H.	Y-axis	Count	X-axis
				(°C)	(%)			, axio
1	05-05-18	09:15 -	10:15	27.6	79	0.05367	2151	35.85
2	05-05-18	10:15 -	11:15	27.6	80	0.05864	2347	39.12
3	05-05-18	11:15 -	12:15	27.7	80	0.06661	2679	44.65
4	05-05-18	12:15 -	13:15	27.7	79	0.06335	2546	42.43
Note:						shnick TEOM®		
	2. Total Count							
	3. Count/minut	e was calcula	ated by (I	otal Cour	nt/60)			
By Linea	ar Regression of	Y or X						
	(K-factor):		0.0015					
	ation coefficient:		0.9994		77.1-			
2 2 22 22								
Validity	y of Calibration F	Record:	May 201	19				
Remark	s:							
	200	<del></del>	92			/		
	¥ 1292000000		2.		W			
QC Re	eviewer: YW F	ung	Signat	ure:		Date	e: 07 May	2018

## **EQUIPMENT CALIBRATION RECORD**

Model				Laser Do		itor		
	ment No.: tivity Adjustment	Scale Set	tina:	A.005.07a 557 CPM				
Operator:				Mike She		M)		
Standa	rd Equipment				-			-
Equipo Venue Model Serial Last C	ment:  No.: No: Calibration Date*:	Cyb Seri Con Sen 2 M	erport (Paies 1400A trol: sor: ay 2019	140AB21989 1200C14369	99803 59803	K _o : _12500		
	ks: Recommend	ed interva	for hard	ware calibra	tion is 1	year		
Calibra	tion Result		- Hali va					
	ivity Adjustment ivity Adjustment				5000000000	557 CP		
Hour	Date (dd-mm-yy)	Т	ime	Cond Temp	oient dition R.H.	Concentration ¹ (mg/m³) <b>Y-axis</b>	Total Count ²	Count/ Minute ³ X-axis
1	04-05-19	09:15	- 10:1	(°C) 5 23.7	(%) 81	0.04765	1914	24.00
2	04-05-19	10:15	- 10.1 - 11:1		82	0.05036	2025	31.90 33.75
3	04-05-19	11:15	- 12:1		82	0.05251	2103	35.05
4	04-05-19	12:15	- 13:1		82	0.05587	2231	37.18
Slope	2. Total Count 3. Count/minut ar Regression of (K-factor):	was logge e was cald	ed by Lase culated by _0.0015	er Dust Mon / (Total Cou	itor	ashnick TEOM®		
Correl	ation coefficient:		0.9977	1				
Validit	y of Calibration F	Record:	4 May	2020				
Remark	s:							
					1. /			
OC Pa	wiewer: VM/E	una	Cia	noturo:	4/	Data	. 06 M-	. 2010



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



## CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0914 03

Page

of

2

Item tested

Description

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.:

**B&K** 2238

**B&K** 

Serial/Equipment No.:

2800927

4188

Adaptors used:

2791211

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No .: Date of receipt:

14-Sep-2018

Date of test:

17-Sep-2018

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator

Model: B&K 4226 Serial No.

**Expiry Date:** 

Traceable to:

DS 360 DS 360 2288444 33873

61227

23-Aug-2019 24-Apr-2019 23-Apr-2019

CIGISMEC CEPREI

CEPREI

**Ambient conditions** 

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

#### Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3 between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

18-Sep-2018

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev C/01/02/2007



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0914 03

Page

2

#### **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Took	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest:	Status.	Officertainty (GB)	racioi
Self-generated noise	A	Pass	0.3	
•	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
2	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	
	\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinx{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\ti			

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
•	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Date:

Fung Chi Yip

17-Sep-2018

Checked by:

Shek Kwong Tal

Date:

18-Sep-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

Certificate No.:

19CA0327 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K

Type/Model No.:

4231

Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

-

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

-

Request No.: Date of receipt:

27-Mar-2019

(N.004.03)

Date of test:

27-Mar-2019

#### Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	20-Apr-2019	SCL
Preamplifier	B&K 2673	2743150	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	8903B	GB41300350	23-Apr-2019	CEPREI
Universal counter	53132A	MY40003662	24-Apr-2019	CEPREI

#### Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

#### Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
  and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

#### Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements rare presented on page 2 of this certificate.

Feng Jungi

Approved Signatory:

Date:

29-Mar-2019

Company Chop:

SENGINE LERENG COMPANY STOS * OLY STOS * OL

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007



香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0327 01-02

Page:

2

1, Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

		(Output level in dB re 20 μPa		
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Expanded Uncertainty dB	
1000	94.00	94.23	0.10	

#### 2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.014 dB

Estimated expanded uncertainty

0.005 dB

#### 3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0 1 Hz

Coverage factor k = 2.2

#### **Total Noise and Distortion** 4.

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

Fong Chun Wai

Date: 27-Mar-2019

Date:

29-Mar-2019

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co., Ltd

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

Certificate No.:

18CA1008 02

Page:

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-74

Serial/Equipment No.:

34246490 / N.004.10

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

Request No:

Date of receipt:

08-Oct-2018

Date of test:

10-Oct-2018

#### Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	20-Apr-2019	SCL
Preamplifier	B&K 2673	2743150	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	61227	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	8903B	GB41300350	23-Apr-2019	CEPREI
Universal counter	53132A	MY40003662	24-Apr-2019	CEPREI

#### **Ambient conditions**

Temperature:

Relative humidity:

21 ± 1 °C

Air pressure:

50 ± 10 % 1005 ± 5 hPa

#### Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

#### Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions

Details of the performed measurements are presented on page 2 of this certificate.

Fend Junai

Approved Signatory:

Date:

10-Oct-2018

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument

© Soils & Materials Engineering Co., Ltd

Form No CARP156-1/Issue 1/Rev D/01/03/2007



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



#### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1008 02

Page:

2

#### 1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

(Output level in dB re 20 uPa)

of

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.89	0.10

#### 2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.030 dB

Estimated expanded uncertainty

0.005 dB

#### 3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1002.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

#### 4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 2.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip 10-Oct-2018 Checked by:

Date:

Shek Kwong Tal 10-Oct-2018

The standard(s) and equiment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co . Ltd

Form No.CARP156-2/Issue 1/Rev C/01/05/2005